Metrics for Symbol Clustering from a Pseudoergodic Information Source

نویسندگان

  • Ángel Fernando Kuri Morales
  • Oscar Herrera-Alcántara
چکیده

We discuss a set of metrics, which aims to facilitate the formation of symbol groups from a pseudoergodic information source. An optimal codification can then be applied on the symbols(such as Huffman Codes [1]) for zero memory sources where it tends to the theorical limit of compression limited by the entropy. These metrics can be used as a fitness measure of the individuals in the Vasconcelos genetic algorithm as an alternative to exhaustive search.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranking the Trading Symbols of the Largest Companies Listed in the Tehran Stock Exchange Based on the Probability of Informed Trade Criteria

I n this paper, trading symbols of the 30 largest companies listed in the Tehran Stock Exchange (TSE) were ranked based on the asymmetry information risk. Using the Ersan and Alici (2016) modified clustering algorithm (EA), we estimated the probability of informed trading (PIN) to measure the asymmetry information among traders for each trading symbol and trading day through two-year...

متن کامل

Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering

Class cohesion is considered as one of the most important object-oriented software attributes. High cohesion is, in fact, a desirable property of software. Many different metrics have been suggested in the last several years to measure the cohesion of classes in object-oriented systems. The class of structural object-oriented cohesion metrics is the most investigated category of cohesion metric...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Review of ranked-based and unranked-based metrics for determining the effectiveness of search engines

Purpose: Traditionally, there have many metrics for evaluating the search engine, nevertheless various researchers’ proposed new metrics in recent years. Aware of this new metrics is essential to conduct research on evaluation of the search engine field. So, the purpose of this study was to provide an analysis of important and new metrics for evaluating the search engines. Methodology: This is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003